Title of article :
A geometric consequence of residual smallness Original Research Article
Author/Authors :
Keith A. Kearnes، نويسنده , , Emil W. Kiss، نويسنده , , Matthew A. Valeriote، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
33
From page :
137
To page :
169
Abstract :
We describe a new way to construct large subdirectly irreducibles within an equational class of algebras. We use this construction to show that there are forbidden geometries of multitraces for finite algebras in residually small equational classes. The construction is first applied to show that minimal equational classes generated by simple algebras of types 2, 3 or 4 are residually small if and only if they are congruence modular. As a second application of the construction we characterize residually small locally finite abelian equational classes.
Keywords :
Equational class , Subdirectly irreducible , Tame congruence theory , Abelian algebra , Multitrace , Residual smallness
Journal title :
Annals of Pure and Applied Logic
Serial Year :
1999
Journal title :
Annals of Pure and Applied Logic
Record number :
896206
Link To Document :
بازگشت