Author/Authors :
A.W.M. Dress، نويسنده , , W. Terhalle، نويسنده ,
Abstract :
Given a finite set E and a map ƒ: P(E) → IR ∪ {−∞}, we define ƒ to be well-layered, if and only if for every map η: E → IR and every finite sequence e1, e2,…, eiϵE with #{e1,…, ei} =i and View the MathML source for all j = 1,…, i and eϵEβ{e1,…,ej−1}, one has f({e1,…,ei})+Σk=1iη(ek)≥f(I)+ΣeϵIη(e) for every I⊆E with #I=i. In this note, we show that a map f is well-layered if and only if for every I ⊆ J ⊆ E with #(JβI) ≥ 3 and with f(I) ≠ −∞ or I = φ and for every aϵJβI, there exists some bϵJβ(Iυ {a}) with f(Iυ {a}) + f(Jβ{a}) ≤ f(Iυ {b}) + f (Jβ{b}), and if in addition f(I) = −∞ for all subsets I of some fixed cardinality i with 0
Keywords :
Matroids , Valuated matroids , Greedoids , Greedy algorithms , Valuated ?-matroids
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters