Title of article :
Directional Lipschitzian optimal solution of infinite-dimensional optimization problems Original Research Article
Author/Authors :
S. Hilout، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
6
From page :
123
To page :
128
Abstract :
This paper presents a study of the Lipschitz dependence of the optimal solution of elementary convex programs in a Hilbert space when the equality constraints are subjected to small perturbations in some fixed direction and with the sub- and super-quadratic growth conditions. This study follows the recent results of Janin and Gauvin [1] related to the finite-dimentional case. As an illustrative example, we study the directional derivative with respect to the boundary conditions of the infimum (value function) of the Mossolov problem in space dimension one.
Keywords :
Nonsmooth analysis , Optimality condition , value function , Greenיs function , Optimization
Journal title :
Applied Mathematics Letters
Serial Year :
1998
Journal title :
Applied Mathematics Letters
Record number :
896728
Link To Document :
بازگشت