• Title of article

    Stable finite element methods with divergence augmentation for the stokes problem

  • Author/Authors

    K. Kim، نويسنده , , S. Lee، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    6
  • From page
    321
  • To page
    326
  • Abstract
    The mixed finite element approximation scheme with divergence augmentation for the Stokes problem is analyzed. We show that the Pk+1 − Pk−1 triangular elements or the Qk+1 − Qk−1 quadrilateral elements in R2, k ≥ 1, are stable with hk+View the MathML source convergence in H1-norm for velocity and hk convergence in L2-norm for pressure. Moreover, hk+1 convergence in H(div)-norm for velocity can be shown if the domain is convex. In R3, the cross-grid Pk+1 − Pk−1 tetrahedral elements, k ≥ 2, can be analyzed analogously for the approximation scheme with divergence augmentation and pressure stabilization. A numerical test which confirms the convergence analysis is presented.
  • Keywords
    Mixed finite element method , stabilization , Stokes problem
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2001
  • Journal title
    Applied Mathematics Letters
  • Record number

    897180