Title of article :
Fractal dimension of quasi-periodic orbits Original Research Article
Author/Authors :
Pengjian Shang، نويسنده , , K. Widder، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
5
From page :
969
To page :
973
Abstract :
In this paper, we estimate fractal dimensions of quasi-periodic orbits. Recently, Naito considered quasi-periodic orbits of Hölder continuous functions and showed that if the frequency vector ω satisfies certain Diophantine approximation type conditions, then in the n-frequency quasi-periodic case, the fractal dimension of its orbit is majorized by the value n/δ when it is Hölder continuous with exponent δ, 0 < δ ≤ 1. We prove that the upper bound on the dimension given by Naito can be obtained rather more easily, and to our astonishment, for all frequency vectors ω ϵ View the MathML sourcen. With the reverse Hölder type condition, for a set of ω, the corresponding lower bound on the dimension can be obtained by a similar argument.
Keywords :
Fractal dimension , Reverse H?lder function , Quasi-periodic orbit , H?lder function
Journal title :
Applied Mathematics Letters
Serial Year :
2001
Journal title :
Applied Mathematics Letters
Record number :
897282
Link To Document :
بازگشت