Title of article
Spectral singularities of the nonhomogeneous Sturm-Liouville equations Original Research Article
Author/Authors
M. Adivar، نويسنده , , E. Bairamov، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2002
Pages
8
From page
825
To page
832
Abstract
Let us consider the nonhomogeneous boundary value problem where q and f are complex valued functions, h ϵ View the MathML source and λ is a spectral parameter. In this article, we investigate the spectral singularities and the eigenvalues of (A.1),(A.2), using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (A.1),(A.2), has a finite number of spectral singularities and eigenvalues with finite multiplicities, under conditions, for some ε > 0, δ > 0.
Keywords
Sturm-Liouville equations , Spectral singularities , eigenvalues
Journal title
Applied Mathematics Letters
Serial Year
2002
Journal title
Applied Mathematics Letters
Record number
897420
Link To Document