Title of article :
Spectral singularities of the nonhomogeneous Sturm-Liouville equations
Original Research Article
Author/Authors :
M. Adivar، نويسنده , , E. Bairamov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Let us consider the nonhomogeneous boundary value problem where q and f are complex valued functions, h ϵ View the MathML source and λ is a spectral parameter. In this article, we investigate the spectral singularities and the eigenvalues of (A.1),(A.2), using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (A.1),(A.2), has a finite number of spectral singularities and eigenvalues with finite multiplicities, under conditions, for some ε > 0, δ > 0.
Keywords :
Sturm-Liouville equations , Spectral singularities , eigenvalues
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters