Title of article :
Spectral singularities of the nonhomogeneous Sturm-Liouville equations Original Research Article
Author/Authors :
M. Adivar، نويسنده , , E. Bairamov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
8
From page :
825
To page :
832
Abstract :
Let us consider the nonhomogeneous boundary value problem where q and f are complex valued functions, h ϵ View the MathML source and λ is a spectral parameter. In this article, we investigate the spectral singularities and the eigenvalues of (A.1),(A.2), using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (A.1),(A.2), has a finite number of spectral singularities and eigenvalues with finite multiplicities, under conditions, for some ε > 0, δ > 0.
Keywords :
Sturm-Liouville equations , Spectral singularities , eigenvalues
Journal title :
Applied Mathematics Letters
Serial Year :
2002
Journal title :
Applied Mathematics Letters
Record number :
897420
Link To Document :
بازگشت