Title of article :
Taylor expansion of best lp-approximations about p = 1
Original Research Article
Author/Authors :
J.M. Quesada Gomez، نويسنده , , J. Martinez-Moreno، نويسنده , , J. Navas، نويسنده , , J. Fern?ndez-Ochoa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
In this paper, we consider the problem of best approximation in lp (n), 1 ≤ p ≤ ∞. If hp, 1 ≤ p < ∞, denotes the best lp-approximation of the element hϵrn from a proper affine subspace K of rn, h ∉ K, then View the MathML source, where View the MathML source, is a best l1-approximation of h from K, the so-called natural best k1-approximation. We prove that, for every rϵn, the best kp-approximations have a Taylor expansion of order r of the form
View the MathML source
for some αlϵrn, 1 ≤ l ≤ r, and γp(r)ϵrn with |γp(r)|=o((p−1)r+1).
Keywords :
Best kp-approximation , Natural best k1-approximation , Taylorיs expansion , Polya 1-algorithm
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters