Title of article :
Minimum Kφ-divergence estimator
Original Research Article
Author/Authors :
T Pérez، نويسنده , , J.A. Pardo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
In the present work, the problem of estimating parameters of statistical models for categorical data is analyzed. The minimum Kφ-divergence estimator is obtained minimizing the Kφ-divergence measure between the theoretical and the empirical probability vectors. Its asymptotic properties are obtained. From a simulation study, the conclusion is that our estimator emerges as an attractive alternative to the classical maximum likelihood estimator.
Keywords :
K?-divergence , Minimum K?-divergence estimator , Consistency , simulation , Categorical data
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters