Title of article :
Convergence property of a class of variable metric methods Original Research Article
Author/Authors :
Zhongzhi Zhang، نويسنده , , Ding-Hua Cao، نويسنده , , Jinping Zeng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
437
To page :
442
Abstract :
We investigate convergence property of the restricted Broyden class of variable metric methods. We show that when these methods with unit step are applied to a strictly convex quadratic objective function, the generated iterative sequence converges to the unique solution of the problem globally and superlinearly. Moreover, the distance between the iterative matrix and the Hessian matrix of the objective function decreases with iterations. The sequence of function values also exhibits descent property when the iteration is sufficiently large.
Keywords :
Variable metric methods , Quadratic function
Journal title :
Applied Mathematics Letters
Serial Year :
2004
Journal title :
Applied Mathematics Letters
Record number :
897724
Link To Document :
بازگشت