Title of article :
Three positive radial solutions for elliptic equations in a ball Original Research Article
Author/Authors :
Joao Marcos، نويسنده , , Sebasti?n Lorca، نويسنده , , Pedro Ubilla، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
7
From page :
1163
To page :
1169
Abstract :
In this work we deal with a class of second-order elliptic problems of the form View the MathML source−Δu=λk(|x|)f(u) in Ω, with non-homogeneous boundary condition u=a on ∂Ωu=a on ∂Ω where ΩΩ is the ball of radius R0R0 centered at origin, View the MathML sourceλ,a are positive parameters, f∈C([0,+∞),[0,+∞))f∈C([0,+∞),[0,+∞)) is an increasing function and k∈C([0,R0],[0,+∞))k∈C([0,R0],[0,+∞)) is not identically zero on any subinterval of [0,R0][0,R0]. We obtain via a fixed point theorem of cone expansion/compression type the existence of at least three positive radial solutions.
Keywords :
Positive radial solutions , multiplicity , fixed points
Journal title :
Applied Mathematics Letters
Serial Year :
2005
Journal title :
Applied Mathematics Letters
Record number :
898036
Link To Document :
بازگشت