Title of article
The upper Jacobi and upper Gauss–Seidel type iterative methods for preconditioned linear systems Original Research Article
Author/Authors
Zhuan-De Wang، نويسنده , , Tingzhu Huang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
8
From page
1029
To page
1036
Abstract
The preconditioner for solving the linear system Ax=bAx=b introduced in [D.J. Evans, M.M. Martins, M.E. Trigo, The AOR iterative method for new preconditioned linear systems, J. Comput. Appl. Math. 132 (2001) 461–466] is generalized. Results obtained in this paper show that the convergence rate of Jacobi and Gauss–Seidel type methods can be increased by using the preconditioned method when AA is an MM-matrix.
Keywords
Preconditioned iterative method , Upper Jacobi and upper Gauss–Seidel type method , spectral radius
Journal title
Applied Mathematics Letters
Serial Year
2006
Journal title
Applied Mathematics Letters
Record number
898233
Link To Document