• Title of article

    The upper Jacobi and upper Gauss–Seidel type iterative methods for preconditioned linear systems Original Research Article

  • Author/Authors

    Zhuan-De Wang، نويسنده , , Tingzhu Huang، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    8
  • From page
    1029
  • To page
    1036
  • Abstract
    The preconditioner for solving the linear system Ax=bAx=b introduced in [D.J. Evans, M.M. Martins, M.E. Trigo, The AOR iterative method for new preconditioned linear systems, J. Comput. Appl. Math. 132 (2001) 461–466] is generalized. Results obtained in this paper show that the convergence rate of Jacobi and Gauss–Seidel type methods can be increased by using the preconditioned method when AA is an MM-matrix.
  • Keywords
    Preconditioned iterative method , Upper Jacobi and upper Gauss–Seidel type method , spectral radius
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2006
  • Journal title
    Applied Mathematics Letters
  • Record number

    898233