Title of article
A linear ODE for the Omega function associated with the Euler function image and the Bernoulli function image Original Research Article
Author/Authors
P.L. Butzer، نويسنده , , Tibor K. Pog?ny، نويسنده , , H.M. Srivastava، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
5
From page
1073
To page
1077
Abstract
The authors derive a linear ODE (ordinary differential equation) whose particular solution is the Butzer–Flocke–Hauss complete real-parameter Omega function Ω(w)Ω(w), which is associated with the complex-index Bernoulli function Bα(z)Bα(z) and with the complex-index Euler function Eα(z)Eα(z). This is accomplished here with the aid of an integral representation of the alternating Mathieu series View the MathML sourceS˜(w). A new integral representation and some two-sided bounding inequalities are also given for the Omega function.
Keywords
Riemann’s Zeta function , Bessel function , Alternating Mathieu series , Complex-index Bernoulli function , Complex-index Euler function , Butzer–Flocke–Hauss complete Omega function , Integral representations of alternating Mathieu series , Integral representation of the Omega function , Dirichlet’s Eta function
Journal title
Applied Mathematics Letters
Serial Year
2006
Journal title
Applied Mathematics Letters
Record number
898241
Link To Document