Title of article
Lyapunov’s inequality on timescales Original Research Article
Author/Authors
Fu-Hsiang Wong، نويسنده , , Shiueh-Ling Yu، نويسنده , , Cheh-Chih Yeh، نويسنده , , Wei-Cheng Lian، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
7
From page
1293
To page
1299
Abstract
The purpose of this work is to establish the timescale version of Lyapunov’s inequality as follows: Let x(t)x(t) be a nontrivial solution of
View the MathML source(r(t)xΔ(t))Δ+p(t)xσ(t)=0on [a,b]
Turn MathJax on
satisfying x(a)=x(b)=0x(a)=x(b)=0. Then, under suitable conditions on pp, rr, aa and bb, we have
View the MathML source∫abp+(t)Δt≥{r(a)r(b)b−af(d),if r is increasing,r(b)r(a)b−af(d),if r is decreasing,
Turn MathJax on
where p+(t)=max{p(t),0},f(t)=(t−a)(b−t)p+(t)=max{p(t),0},f(t)=(t−a)(b−t) and d∈Td∈T satisfies
View the MathML source|a+b2−d|=min{|a+b2−s|∣s∈[a,b]∩T}
Turn MathJax on
if View the MathML sourcea+b2∈T. Here TT is a timescale (see below).
Keywords
Timescales , Lyapunov’s inequality
Journal title
Applied Mathematics Letters
Serial Year
2006
Journal title
Applied Mathematics Letters
Record number
898280
Link To Document