• Title of article

    Lyapunov’s inequality on timescales Original Research Article

  • Author/Authors

    Fu-Hsiang Wong، نويسنده , , Shiueh-Ling Yu، نويسنده , , Cheh-Chih Yeh، نويسنده , , Wei-Cheng Lian، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    7
  • From page
    1293
  • To page
    1299
  • Abstract
    The purpose of this work is to establish the timescale version of Lyapunov’s inequality as follows: Let x(t)x(t) be a nontrivial solution of View the MathML source(r(t)xΔ(t))Δ+p(t)xσ(t)=0on [a,b] Turn MathJax on satisfying x(a)=x(b)=0x(a)=x(b)=0. Then, under suitable conditions on pp, rr, aa and bb, we have View the MathML source∫abp+(t)Δt≥{r(a)r(b)b−af(d),if r is increasing,r(b)r(a)b−af(d),if r is decreasing, Turn MathJax on where p+(t)=max{p(t),0},f(t)=(t−a)(b−t)p+(t)=max{p(t),0},f(t)=(t−a)(b−t) and d∈Td∈T satisfies View the MathML source|a+b2−d|=min{|a+b2−s|∣s∈[a,b]∩T} Turn MathJax on if View the MathML sourcea+b2∈T. Here TT is a timescale (see below).
  • Keywords
    Timescales , Lyapunov’s inequality
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2006
  • Journal title
    Applied Mathematics Letters
  • Record number

    898280