• Title of article

    A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization Original Research Article

  • Author/Authors

    Neculai Andrei، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    6
  • From page
    645
  • To page
    650
  • Abstract
    This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is selected as the spectral gradient. Computational results for a set consisting of 750 test unconstrained optimization problems show that this new scaled conjugate gradient algorithm substantially outperforms known conjugate gradient methods such as the spectral conjugate gradient SCG of Birgin and Martínez [E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001) 117–128] and the (classical) conjugate gradient of Polak and Ribière [E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Francaise Informat. Reserche Opérationnelle, 3e Année 16 (1969) 35–43], but subject to the CPU time metric it is outperformed by L-BFGS [D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. B 45 (1989) 503–528; J. Nocedal. http://www.ece.northwestern.edu/~nocedal/lbfgs.html].
  • Keywords
    BFGS preconditioning , Conjugate gradient method , Unconstrained optimization
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2007
  • Journal title
    Applied Mathematics Letters
  • Record number

    898413