Title of article
A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization Original Research Article
Author/Authors
Neculai Andrei، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
6
From page
645
To page
650
Abstract
This letter presents a scaled memoryless BFGS preconditioned conjugate gradient algorithm for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart criterion holds. The parameter scaling the gradient is selected as the spectral gradient. Computational results for a set consisting of 750 test unconstrained optimization problems show that this new scaled conjugate gradient algorithm substantially outperforms known conjugate gradient methods such as the spectral conjugate gradient SCG of Birgin and Martínez [E. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001) 117–128] and the (classical) conjugate gradient of Polak and Ribière [E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Francaise Informat. Reserche Opérationnelle, 3e Année 16 (1969) 35–43], but subject to the CPU time metric it is outperformed by L-BFGS [D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. B 45 (1989) 503–528; J. Nocedal. http://www.ece.northwestern.edu/~nocedal/lbfgs.html].
Keywords
BFGS preconditioning , Conjugate gradient method , Unconstrained optimization
Journal title
Applied Mathematics Letters
Serial Year
2007
Journal title
Applied Mathematics Letters
Record number
898413
Link To Document