Title of article :
Sobolev exponents of Butterworth refinable functions
Original Research Article
Author/Authors :
Hong Oh Kim and Jae Kun Lim، نويسنده , , Rae Young Kim and Jae Kun Lim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The precise Sobolev exponent s∞(φn)s∞(φn) of the Butterworth refinable function φnφn associated with the Butterworth filter of order nn, View the MathML sourcebn(ξ)≔cos2n(ξ/2)cos2n(ξ/2)+sin2n(ξ/2), is shown to be s∞(φn)=nlog23+log2(1+3−n)s∞(φn)=nlog23+log2(1+3−n). This recovers the previously given asymptotic estimate of s∞(φn)s∞(φn) of Fan and Sun, and gives more accurate regularity of Butterworth refinable function φnφn.
Keywords :
Sobolev exponent , Orthonormal cardinal function , Butterworth filter , Blaschke product , Butterworth refinable function
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters