Title of article :
Cut points in metric spaces Original Research Article
Author/Authors :
Andreas W.M. Dress، نويسنده , , Katharina T. Huber، نويسنده , , Jacobus Koolen، نويسنده , , Vincent Moulton، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
4
From page :
545
To page :
548
Abstract :
In this note, we will define topological and virtual cut points of finite metric spaces and show that, though their definitions seem to look rather distinct, they actually coincide. More specifically, let XX denote a finite set, and let D:X×X→R:(x,y)↦xyD:X×X→R:(x,y)↦xy denote a metric defined on XX. The tight span T(D)T(D) of DD consists of all maps f∈RXf∈RX for which f(x)=supy∈X(xy−f(x))f(x)=supy∈X(xy−f(x)) holds for all x∈Xx∈X. Define a map f∈T(D)f∈T(D) to be a topological cut point of DD if T(D)−{f}T(D)−{f} is disconnected, and define it to be a virtual cut point of DD if there exists a bipartition (or split) of the support View the MathML sourcesupp(f) of ff into two non-empty sets AA and BB such that ab=f(a)+f(b)ab=f(a)+f(b) holds for all points a∈Aa∈A and b∈Bb∈B. It will be shown that, for any given metric DD, topological and virtual cut points actually coincide, i.e., a map f∈T(D)f∈T(D) is a topological cut point of DD if and only if it is a virtual cut point of DD.
Keywords :
metric space , Block decomposition , Optimal realization , Cut point , Tight-span
Journal title :
Applied Mathematics Letters
Serial Year :
2008
Journal title :
Applied Mathematics Letters
Record number :
898614
Link To Document :
بازگشت