Title of article
On the rational recursive sequence View the MathML sourceyn=A+yn−1yn−m for small A
Author/Authors
Kenneth S. Berenhaut، نويسنده , , Katherine M. Donadio، نويسنده , , John D. Foley، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
4
From page
906
To page
909
Abstract
This work studies the existence of positive prime periodic solutions of higher order for rational recursive equations of the form
View the MathML sourceyn=A+yn−1yn−m,n=0,1,2,…,
Turn MathJax on
with y−m,y−m+1,…,y−1∈(0,∞)y−m,y−m+1,…,y−1∈(0,∞) and m∈{2,3,4,…}m∈{2,3,4,…}. In particular, we show that for sufficiently small A>0A>0, there exist periodic solutions with prime period 2m+Um+12m+Um+1, for almost all mm, where Um=max{i∈N:i(i+1)≤2(m−1)}Um=max{i∈N:i(i+1)≤2(m−1)}.
Keywords
Rational difference equation , Existence , Periodicity , Binomial coefficients , Fixed point
Journal title
Applied Mathematics Letters
Serial Year
2008
Journal title
Applied Mathematics Letters
Record number
898677
Link To Document