Title of article :
Characterisation of the dynamics of a four-dimensional stick-slip system by a scalar variable
Author/Authors :
U. Galvanetto، نويسنده , , S.R. Bishop، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1995
Pages :
9
From page :
2171
To page :
2179
Abstract :
In this paper some aspects of the dynamics of a 4-dimensional system are described by means of a scalar variable. The two degrees-of-freedom system undergoes self excited vibrations brought on by an instantaneous change in the friction law. The subsequent mathematical system is non-smooth and its phase space has a variable dimension so that, for instance, the usual calculation of Lyapunov exponents is precluded. A 1-dimensional variable is introduced that allows a numerical diagnosis of the chaotic state of the system dynamics and a mechanism proposed for the bifurcation at which the attractor loses stability.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
1995
Journal title :
Chaos, Solitons and Fractals
Record number :
898903
Link To Document :
بازگشت