Title of article
Convergence of KAM iterations for counterterm problems
Author/Authors
M. Govin، نويسنده , , M. Cibils، نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 1998
Pages
9
From page
419
To page
427
Abstract
We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.
Journal title
Chaos, Solitons and Fractals
Serial Year
1998
Journal title
Chaos, Solitons and Fractals
Record number
898986
Link To Document