Title of article :
Fractional representation of Fokker–Planck equation
Author/Authors :
S.A El-Wakil، نويسنده , , M.A. Zahran، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Abstract :
From the definition of the characteristic function and Kramers–Moyal forward expansion, one can obtain the fractional Fokker–Planck equation (FFPE) in the domain of fractal time evolution with a critical exponent β (0<β 1) [El-Wakil SA, Zahran MA. Chaos, Solitons & Fractals 11 (2000) 791–98]. The solutions of Fokker–Planck equation will establish in three different cases of mean-square displacement as follows:
(i) (x(t+τ)−x(t))2 τ,
(ii) (x(t+τ)−x(t))2 τβ, 0<β 1,
(iii) (x(t+τ)−x(t))2 x−θτβ, θ=dw−2.The distribution function of each case can be obtained in a closed form of Fox-function.
Journal title :
Chaos, Solitons and Fractals
Journal title :
Chaos, Solitons and Fractals