Title of article :
Bifurcations and chaotic behavior on the Lanford system
Author/Authors :
Svetoslav Nikolov، نويسنده , , Bozhan Bozhkov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
6
From page :
803
To page :
808
Abstract :
The aim of this article is to investigate in details the bifurcation behavior and show existence of chaotic solutions in the Lanford system. The regular behavior of the model was thoroughly studied in [Theory and Applications of Hopf Bifurcation, Cambridge University Press, 1981; Theory of Chaos, Bulgarian Acad. Press, 2001]. Using Lyapunov–Andronov theory, we define the analytical formulas for the first Lyapunov value (this is not Lyapunov exponent) at the boundaries of stability. Here, for specific parametric choice, we obtain chaotic behavior of the Lanford system for the first time to our knowledge. We also calculate the maximal Lyapunov exponent in the parameters space where chaotic motion of this system exists.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2004
Journal title :
Chaos, Solitons and Fractals
Record number :
900873
Link To Document :
بازگشت