Title of article :
What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension?
Author/Authors :
G.L. He، نويسنده , , S.P. Zhou، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
13
From page :
867
To page :
879
Abstract :
Let 1 < s < 2, and λk > 0 with λk → ∞ satisfy the Hadamard condition λk+1/λk λ > 1. For a class of Besicovich functions , the present paper investigates the intrinsic relationship between box dimension of graphs of their vth fractional integrals g(t) and uth fractional derivatives and the asymptotic behavior of {λk}. We show that: if 0 < v < 1, s > 1 + v, then for sufficiently large λ, holds if and only if ; if 0 < u < 2 − s, then for sufficiently large λ, holds if and only if .
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2005
Journal title :
Chaos, Solitons and Fractals
Record number :
901659
Link To Document :
بازگشت