Title of article :
Contribution of non integer integro-differential operators (NIDO) to the geometrical understanding of Riemann’s conjecture-(II)
Author/Authors :
Alain Le Mehaute، نويسنده , , Laurent Nivanen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
Advances in fractional analysis suggest a new way for the physics understanding of Riemann’s conjecture. It asserts that, if s is a complex number, the non trivial zeros of zeta function in the gap [0, 1], is characterized by . This conjecture can be understood as a consequence of 1/2-order fractional differential characteristics of automorph dynamics upon opened punctuated torus with an angle at infinity equal to π/4. This physical interpretation suggests new opportunities for revisiting the cryptographic methodologies.
Journal title :
Chaos, Solitons and Fractals
Journal title :
Chaos, Solitons and Fractals