Title of article :
Inhibition of chaos in a pendulum equation
Author/Authors :
Jianping Yang، نويسنده , , Zhujun Jing، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
12
From page :
726
To page :
737
Abstract :
Analytical and numerical results concerning the inhibition of chaos in a pendulum equation with parametric and external excitations are given by using Melnikov methods proposed in [Chacón R, Palmero F, Balibrea F. Taming chaos in a driven Josephson junction. Int J Bifurcat Chaos 2001;11(7):1897–909]. We theoretically give parameter-space region and intervals of initial phase-difference, where homoclinic chaos or herteroclinic chaos can be inhibited. Numerical simulations show the consistency and difference with the theoretical analysis and the chaotic behavior can be converted to periodic orbits by adjusting amplitude and phase-difference of parametric excitation. Moreover, we consider the influence of parametric frequency on maximum Lyapunov exponent (LE) for different phase-differences, and give the distribution of maximum Lyapunov exponents in parameter-plane, which indicates the regions of non-chaotic states (non-positive LE) and chaotic states (positive LE).
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2008
Journal title :
Chaos, Solitons and Fractals
Record number :
903038
Link To Document :
بازگشت