Title of article :
Integrable vortex dynamics in anisotropic planar spin liquid model
Author/Authors :
Close preview، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
16
From page :
238
To page :
253
Abstract :
The problem of magnetic vortex dynamics in an anisotropic spin liquid model is considered. For incompressible flow the model admits reduction to saturating Bogomolny inequality analytic projections of spin variables, subject the linear holomorphic Schrödinger equation. It allows us to construct N vortex configurations in terms of the complex Hermite polynomials. Using complex Galilean boost transformations, the interaction of the vortices and the vortex chain lattices (vortex crystals) is studied. By the complexified Cole–Hopf transformation, integrable N vortex dynamics is described by the holomorphic Burgers equation. Mapping of the point vortex problem to N-particle problem, the complexified Calogero–Moser system, showing its integrability and the Hamiltonian structure, is given.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2008
Journal title :
Chaos, Solitons and Fractals
Record number :
903466
Link To Document :
بازگشت