Title of article :
Non-resonance 3D homoclinic bifurcation with an inclination flip q
Author/Authors :
Qiuying Lu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
9
From page :
2597
To page :
2605
Abstract :
Local active coordinates approach is employed to study the bifurcation of a non-resonance three-dimensional smooth system which has a homoclinic orbit to a hyperbolic equilibrium point with three real eigenvalues a; b; 1 satisfying a > b > 0. A homoclinic orbit is called an inclination-flip homoclinic orbit if the strong inclination property of the stable manifold is violated. In this paper, we show the existence of 1-homoclinic orbit, 1-periodic orbit, 2n-homoclinic orbit and 2n-periodic orbit in the unfolding of an inclination-flip homoclinic orbit. And we figure out the bifurcation diagram based on the existence region of the corresponding bifurcation.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2009
Journal title :
Chaos, Solitons and Fractals
Record number :
904165
Link To Document :
بازگشت