Title of article :
Propagating wave patterns for the ‘resonant’ Davey–Stewartson system
Author/Authors :
X.Y. Tang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
6
From page :
2707
To page :
2712
Abstract :
The resonant nonlinear Schrödinger (RNLS) equation exhibits the usual cubic nonlinearity present in the classical nonlinear Schrödinger (NLS) equation together with an additional nonlinear term involving the modulus of the wave envelope. It arises in the context of the propagation of long magneto-acoustic waves in cold, collisionless plasma and in capillarity theory. Here, a natural (2 + 1) (2 spatial and 1 temporal)-dimensional version of the RNLS equation is introduced, termed the ‘resonant’ Davey–Stewartson system. The multilinear variable separation approach is used to generate a class of exact solutions, which will describe propagating, doubly periodic wave patterns.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2009
Journal title :
Chaos, Solitons and Fractals
Record number :
904178
Link To Document :
بازگشت