Title of article :
Cellular Differentiation in Response to Nutrient Availability: The Repressor of Meiosis, Rme1p, Positively Regulates Invasive Growth in Saccharomyces cerevisiae
Author/Authors :
Dyk، Dewald van نويسنده , , Hansson، Guy نويسنده , , Pretorius، Isak S. نويسنده , , Bauer، Florian F. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-1044
From page :
1045
To page :
0
Abstract :
In the yeast Saccharomyces cerevisiae, the transition from a nutrient-rich to a nutrient-limited growth medium typically leads to the implementation of a cellular adaptation program that results in invasive growth and/or the formation of pseudohyphae. Complete depletion of essential nutrients, on the other hand, leads either to entry into a nonbudding, metabolically quiescent state referred to as G0 in haploid strains or to meiosis and sporulation in diploids. Entry into meiosis is repressed by the transcriptional regulator Rme1p, a zinc-finger-containing DNA-binding protein. In this article, we show that Rme1p positively regulates invasive growth and starch metabolism in both haploid and diploid strains by directly modifying the transcription of the FLO11 (also known as MUC1) and STA2 genes, which encode a cell wall-associated protein essential for invasive growth and a starch-degrading glucoamylase, respectively. Genetic evidence suggests that Rme1p functions independently of identified signaling modules that regulate invasive growth and of other transcription factors that regulate FLO11 and that the activation of FLO11 is dependent on the presence of a promoter sequence that shows significant homology to identified Rme1p response elements (RREs). The data suggest that Rme1p functions as a central switch between different cellular differentiation pathways.
Keywords :
N deposition , Pine barrens , Ectomycorrhizae , Indicator species , Oligotrophic soils
Journal title :
GENETICS
Serial Year :
2003
Journal title :
GENETICS
Record number :
91085
Link To Document :
بازگشت