Title of article :
On the Faddeev–Popov determinant in Regge calculus
Author/Authors :
V.M. Khatsymovsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
3
From page :
359
To page :
361
Abstract :
The functional integral measure in the 4D Regge calculus normalised w.r.t. the DeWitt supermetric on the space of metrics is considered. The Faddeev–Popov factor in the measure is shown according to the previous authorʹs work on the continuous fields in Regge calculus to be generally ill-defined due to the conical singularities. Possible resolution of this problem is discretisation of the gravity ghost (gauge) field by, e.g., confining ourselves to the affine transformations of the affine frames in the simplices. This results in the singularity of the functional measure in the vicinity of the flat background, where part of the physical degrees of freedom connected with link lengths become the gauge ones.
Journal title :
PHYSICS LETTERS B
Serial Year :
2001
Journal title :
PHYSICS LETTERS B
Record number :
914290
Link To Document :
بازگشت