Abstract :
We show that a kink and a topologically trivial soliton in the Gross–Neveu model form, in the large-N limit, a marginally stable static configuration, which is bound at threshold. The energy of the resulting composite system does not depend on the separation of its solitonic constituents, which serves as a modulus governing the profile of the compound soliton. Thus, in the large-N limit, a kink and a non-topological soliton exert no force on each other.