Title of article :
Peano kernel behaviour and error bounds for symmetric quadrature formulas
Author/Authors :
P. Favati، نويسنده , , G. Lotti، نويسنده , , F. Romani، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1995
Pages :
8
From page :
27
To page :
34
Abstract :
For symmetric quadrature formulas, sharper error bounds are generated by a formulation of the Peano Kernel theory which fully exploits the symmetry properties. Formulas which use nodes outside the integration interval and/or derivative data are taken into consideration. We prove also that, for any symmetric formula, the Peano Kernels of a sufficiently large degree do not change sign in a suitable interval. This result allows a finite expansion of the truncation error for any regular integrand function.
Keywords :
Numerical integration , Quadrature formulas , Peano Kernel , Truncation error in quadrature , Hermite quadrature
Journal title :
Computers and Mathematics with Applications
Serial Year :
1995
Journal title :
Computers and Mathematics with Applications
Record number :
917526
Link To Document :
بازگشت