Title of article :
Bayesian estimation and the Kalman filter
Author/Authors :
A. L. Barker، نويسنده , , D. E. Brown، نويسنده , , W. N. Martin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1995
Pages :
23
From page :
55
To page :
77
Abstract :
In this tutorial article, we give a Bayesian derivation of a basic state estimation result for discrete-time Markov process models with independent process and measurement noise and measurements not affecting the state. We then list some properties of Gaussian random vectors and show how the Kalman filtering algorithm follows from the general state estimation result and a linear-Gaussian model definition. We give some illustrative examples including a probabilistic Turing machine, dynamic classification, and tracking a moving object.
Keywords :
Tracking , Markov models , Dyanamic classification , Turing machine , Bayesian statistics , Kalman filter
Journal title :
Computers and Mathematics with Applications
Serial Year :
1995
Journal title :
Computers and Mathematics with Applications
Record number :
917635
Link To Document :
بازگشت