Title of article :
Strong asymptotics inside the unit disk for Sobolev orthogonal polynomials
Author/Authors :
E. Berriochoa، نويسنده , , A. Cachafeiro، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
9
From page :
253
To page :
261
Abstract :
In the present paper, we give sufficient conditions in order to establish the extension of the strong asymptotics up to the boundary and inside the unit disk for Sobolev orthogonal polynomials. We consider the following Sobolev inner product on the unit circle: with μ0 a finite positive Borel measure on [0,2π] and μ1 a measure in the Szeg ʹs class. On the assumption that the Carathéodory function of μ0 and the Szeg function ofμ1 have analytic extension, we prove that the asymptotic formula holds true outside the disk and it can be extended inside the disk.
Keywords :
Carathéodory function , orthogonal polynomials , Sobolev inner products , measures on the unit circle , Szeg? function
Journal title :
Computers and Mathematics with Applications
Serial Year :
2002
Journal title :
Computers and Mathematics with Applications
Record number :
919327
Link To Document :
بازگشت