Title of article :
A geometric programming approach for bivariate cubic L1 splines
Author/Authors :
Yong Wang، نويسنده , , Shu - Cherng Fang، نويسنده , , J.E. Lavery، نويسنده , , Chi-Hao Cheng، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
Bivariate cubic L1 splines provide C1-smooth, shape-preserving interpolation of arbitrary data, including data with abrupt changes in spacing and magnitude. The minimization principle for bivariate cubic L1 splines results in a nondifferentiable convex optimization problem. This problem is reformulated as a generalized geometric programming problem. A geometric dual with a linear objective function and convex cubic constraints is derived. A linear system for dual-to-primal conversion is established. The results of computational experiments are presented.
Keywords :
Geometric programming , interpolation , Spline function , bivariate , Cubic L1 spline
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications