Title of article :
Convolution of fuzzy sets and applications
Author/Authors :
H. Roman-Flores، نويسنده , , Y. Chalco-Cano، نويسنده , , M. Rojas-Medar، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Pages :
7
From page :
1245
To page :
1251
Abstract :
The purpose of this work is studying the approximation in D-metric of upper semi-continuous and normal fuzzy sets with compact support on n by using the convolution (f g) (x) = sup{f (x − y) Λ g(y) : y ε X} between two fuzzy sets, where the distance D(f, g) is the supremum of the Hausdorff distances of their corresponding level sets. In particular, by using -convolution, a density result is proved and some applications in Choquet integration of fuzzy numbers are presented.
Keywords :
Convolution , Choquetיs integrals , Hausdorff metric , Fuzzy sets
Journal title :
Computers and Mathematics with Applications
Serial Year :
2003
Journal title :
Computers and Mathematics with Applications
Record number :
919862
Link To Document :
بازگشت