Title of article :
Precise rates in the law of logarithm for i.i.d. random variables
Author/Authors :
Tian-Xiao Pang، نويسنده , , Zhengyan Lin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
14
From page :
997
To page :
1010
Abstract :
Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables. Set Sn = X1 + X2 + … + Xn and Mn = maxk≤n Sk, n ≥ 1. By using the strong approximation method, we obtain that for any −1 < b ≤ 1, if and only if Ex = 0 and Ex2 < ∞, which strengthen and extend the result of Gut and Spǎtaru [1], where N is the standard normal random variable. Furthermore, L2 convergence and a.s. convergence are also discussed.
Keywords :
The law of logarithm , L2 convergence , A.s. convergence , Strong approximation , I.i.d. random variables
Journal title :
Computers and Mathematics with Applications
Serial Year :
2005
Journal title :
Computers and Mathematics with Applications
Record number :
920205
Link To Document :
بازگشت