Title of article :
Radial basis collocation methods for elliptic boundary value problems
Author/Authors :
Hsin-Yun Hu، نويسنده , , Zi-Cai Li، نويسنده , , Alexander H.-D. Cheng، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
This paper introduces radial basis functions (RBF) into the collocation methods and the combined methods for elliptic boundary value problems. First, the Ritz-Galerkin method (RGM) is chosen using the RBF, and the integration approximation leads to the collocation method of RBF for Poissonʹs equation. Next, the combinations of RBF with finite-element method (FEM), finite-difference method (FDM), etc., can be easily formulated by following Li [1] and Hu and Li [2,3], but more analysis of inverse estimates is explored in this paper. Since the RBFs have the exponential convergence rates, and since the collocation nodes may be scattered in rather arbitrary fashions in various applications, the RBF may be competitive to orthogonal polynomials for smooth solutions. Moreover, for singular solutions, we may use some singular functions and RBFs together. Numerical examples for smooth and singularity problems are provided to display effectiveness of the methods proposed and to support the analysis made.
Keywords :
Elliptic problems , Motzיs problem , Radial basis functions , Collocation method , Combined method , Singularity problem
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications