Title of article :
A multilevel tabu search algorithm for the feature selection problem in biomedical data
Author/Authors :
Idowu O. Oduntan، نويسنده , , Michel Toulouse، نويسنده , , Richard Baumgartner، نويسنده , , Christopher Bowman، نويسنده , , Ray Somorjai، نويسنده , , Teodor G. Crainic، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
15
From page :
1019
To page :
1033
Abstract :
The automated analysis of patients’ biomedical data can be used to derive diagnostic and prognostic inferences about the observed patients. Many noninvasive techniques for acquiring biomedical samples generate data that are characterized by a large number of distinct attributes (i.e., features) and a small number of observed patients (i.e., samples). Using these biomedical data to derive reliable inferences, such as classifying a given patient as either cancerous or noncancerous, requires that the ratio r of the number of samples to the number of features be within the range 5
Keywords :
Multilevel search algorithms , Feature selection problem , Tabu search , Biomedical data
Journal title :
Computers and Mathematics with Applications
Serial Year :
2008
Journal title :
Computers and Mathematics with Applications
Record number :
920715
بازگشت