Title of article :
Boundary value problems for a class of impulsive functional equations
Author/Authors :
Juan J. Nieto، نويسنده , , Rosana Rodriguez-Lopez، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
17
From page :
2715
To page :
2731
Abstract :
This paper is related to the existence and approximation of solutions for impulsive functional differential equations with periodic boundary conditions. We study the existence and approximation of extremal solutions to different types of functional differential equations with impulses at fixed times, by the use of the monotone method. Some of the options included in this formulation are differential equations with maximum and integro-differential equations. In this paper, we also prove that the Lipschitzian character of the function which introduces the functional dependence in a differential equation is not a necessary condition for the development of the monotone iterative technique to obtain a solution and to approximate the extremal solutions to the equation in a given functional interval. The corresponding results are established for the impulsive case. The general formulation includes several types of functional dependence (delay equations, equations with maxima, integro-differential equations). Finally, we consider the case of functional dependence which is given by nonincreasing and bounded functions
Keywords :
Impulsive functional differential equation , Periodic boundary value problem , Comparison results , Monotone iterative technique , lower and upper solutions
Journal title :
Computers and Mathematics with Applications
Serial Year :
2008
Journal title :
Computers and Mathematics with Applications
Record number :
920866
Link To Document :
بازگشت