Title of article :
About a system of anti-periodic trigonometric functions
Author/Authors :
E. Berriochoa، نويسنده , , A. Cachafeiro، نويسنده , , J. Garcia-Amor، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
In this paper we introduce the so-called second kind trigonometric system, which is a useful tool for the representation of 2π “anti-periodic” functions. Using these functions we study a sequence of trigonometric polynomials, which are bi-orthogonal in the Szegő’s sense. We study the usual topics in the theory of Fourier series and we present a new connection with the orthogonal polynomials (OP) on the unit circle and some useful properties like: recurrence relations, kernel representations and a Favard’s type theorem.
Keywords :
Trigonometric orthogonal functions , Bi-orthogonality , Orthogonal polynomials on the unit circle , Verblunsky parameters , Recurrence relations
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications