Title of article :
Trigonometric orthogonal systems and quadrature formulae
Author/Authors :
Gradimir V. Milovanovi?، نويسنده , , Aleksandar S. Cvetkovi?، نويسنده , , Marija P. Stani?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
17
From page :
2915
To page :
2931
Abstract :
Quadrature rules with maximal even trigonometric degree of exactness are considered. We give a brief historical survey on such quadrature rules. Special attention is given on an approach given by Turetzkii [A.H. Turetzkii, On quadrature formulae that are exact for trigonometric polynomials, East J. Approx. 11 (3) (2005) 337–359. Translation in English from Uchenye Zapiski, Vypusk 1 (149). Seria Math. Theory of Functions, Collection of papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk, 1959, pp. 31–54]. The main part of the topic is orthogonal trigonometric systems on [0,2π) (or on [−π,π)) with respect to some weight functions w(x). We prove that the so-called orthogonal trigonometric polynomials of semi-integer degree satisfy a five-term recurrence relation. In particular, we study some cases with symmetric weight functions. Also, we present a numerical method for constructing the corresponding quadratures of Gaussian type. Finally, we give some numerical examples. Also, we compare our method with other available methods.
Keywords :
Trigonometric interpolation , recurrence relation , Orthogonality , Quadrature rules of Gaussian type , Weights , Trigonometric degree of exactness , Nodes
Journal title :
Computers and Mathematics with Applications
Serial Year :
2008
Journal title :
Computers and Mathematics with Applications
Record number :
921188
Link To Document :
بازگشت