Title of article :
The Bezout number for linear piecewise algebraic curvesI
Author/Authors :
Renhong Wang، نويسنده , , Shaofan Wang ، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
12
From page :
1019
To page :
1030
Abstract :
A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function. This paper discusses the Bezout number, the maximum number of intersections between two linear piecewise algebraic curves whose intersections are finite, on regular triangulations. We give an upper bound of the Bezout number for linear piecewise algebraic curves (BN.1; 0I 1; 0I /) on the triangulation with an odd interior vertex. For the triangulations which satisfy a vertex coloring condition, we compute the exact value of the Bezout number BN.1; 0I 1; 0I /.
Keywords :
Bivariate spline function , Linear piecewise algebraic curve , Bezout number
Journal title :
Computers and Mathematics with Applications
Serial Year :
2010
Journal title :
Computers and Mathematics with Applications
Record number :
921229
Link To Document :
بازگشت