Title of article :
Anomalous diffusion modeling by fractal and fractional derivativesI
Author/Authors :
Wen Chena، نويسنده , , Hongguang Suna، نويسنده , , Xiaodi Zhanga، نويسنده , , Dean Koro²ak b، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
5
From page :
1754
To page :
1758
Abstract :
This paper makes an attempt to develop a fractal derivative model of anomalous diffusion. We also derive the fundamental solution of the fractal derivative equation for anomalous diffusion, which characterizes a clear power law. This new model is compared with the corresponding fractional derivative model in terms of computational efficiency, diffusion velocity, and heavy tail property. The merits and distinctions of these two models of anomalous diffusion are then summarized.
Keywords :
Heavy tail , Fractal derivative , Anomalous diffusion , Fractional derivative , Power law
Journal title :
Computers and Mathematics with Applications
Serial Year :
2010
Journal title :
Computers and Mathematics with Applications
Record number :
921304
Link To Document :
بازگشت