Title of article :
Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems
Author/Authors :
Yanjun Liu، نويسنده , , Jie Shengb، نويسنده , , Ruifeng Ding a، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
13
From page :
2615
To page :
2627
Abstract :
This paper studies the convergence of the stochastic gradient identification algorithm of multi-input multi-output ARX-like systems (i.e., multivariable ARX-like systems) by using the stochastic martingale theory. This ARX-like model contains a characteristic polynomial and differs from the conventional multivariable ARX system. The results indicate that the parameter estimation errors converge to zero under the persistent excitation conditions. The simulation results validate the proposed convergence theorem.
Keywords :
Parameter estimation , Multivariable systems , Convergence properties , Stochastic gradient , Recursive identification
Journal title :
Computers and Mathematics with Applications
Serial Year :
2010
Journal title :
Computers and Mathematics with Applications
Record number :
921388
Link To Document :
بازگشت