Title of article :
Nonlinear regression model generation using hyperparameter
optimization
Author/Authors :
Vadim Strijov a، نويسنده , , Gerhard-Wilhelm Weberb، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
An algorithm of the inductive model generation and model selection is proposed to
solve the problem of automatic construction of regression models. A regression model
is an admissible superposition of smooth functions given by experts. Coherent Bayesian
inference is used to estimate model parameters. It introduces hyperparameters which
describe the distribution function of the model parameters. The hyperparameters control
the model generation process.
Keywords :
Hyperparameters , Coherent Bayesian inference , Regression , model selection , Model generation
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications