Title of article :
Riordan arrays and harmonic number identities
Author/Authors :
Weiping Wang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
16
From page :
1494
To page :
1509
Abstract :
Let the numbers P.r; n; k/ be defined by P.r; n; k/ VD Pr H.1/ n 􀀀 H.1/ k ; : : : ; H.r/ n 􀀀 H.r/ k ; where Pr .x1; : : : ; xr / D .􀀀1/rYr .􀀀0Wx1;􀀀1Wx2; : : : ;􀀀.r 􀀀 1/Wxr / and Yr are the exponential complete Bell polynomials. By observing that the numbers P.r; n; k/ generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are obtained. In particular, some of these harmonic number identities also involve other special combinatorial sequences, such as the Stirling numbers of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy numbers of both kinds.
Keywords :
Riordan arrays , Stirling numbers , Harmonic numbers , Cauchy numbers , Lah numbers , Bernoulli numbers and polynomials
Journal title :
Computers and Mathematics with Applications
Serial Year :
2010
Journal title :
Computers and Mathematics with Applications
Record number :
921657
Link To Document :
بازگشت