Title of article :
Riordan arrays and harmonic number identities
Author/Authors :
Weiping Wang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
Let the numbers P.r; n; k/ be defined by
P.r; n; k/ VD Pr
H.1/
n H.1/
k ; : : : ; H.r/
n H.r/
k
;
where Pr .x1; : : : ; xr / D .1/rYr .0Wx1;1Wx2; : : : ;.r 1/Wxr / and Yr are the exponential
complete Bell polynomials. By observing that the numbers P.r; n; k/ generate two
Riordan arrays, we establish several general summation formulas, from which series of
harmonic number identities are obtained. In particular, some of these harmonic number
identities also involve other special combinatorial sequences, such as the Stirling numbers
of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy
numbers of both kinds.
Keywords :
Riordan arrays , Stirling numbers , Harmonic numbers , Cauchy numbers , Lah numbers , Bernoulli numbers and polynomials
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications