Title of article :
The dual eigenvalue problems for the Sturm–Liouville system
Author/Authors :
Y.H. Chenga، نويسنده , , ?، نويسنده , , S.Y. Kunga، نويسنده , , C.K. Lawa، نويسنده , , W.C. Lian b، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
In this paper, we find the minimizer of the eigenvalue gap for the Schrödinger equation and
vibrating string equation. In the first part, we show the first two Neumann eigenvalue gap
of the Schrödinger equation with single-well potentials is not less than 1 and the equality
holds if and only if the potential is constant. In the second part, since the first Neumann
eigenvalue of the vibrating string equation is 0, we turn to show that the minimizing
density function of the second Neumann eigenvalue is of the form hχ(a,π−a)+Hχ[0,π]\(a,π−a)
for some a.
Keywords :
Sturm–Liouville equation , Eigenvalue gap , Eigenvalue ratio
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications