Title of article :
On the geodetic and the hull numbers in strong product graphs
Author/Authors :
J. Caceres، نويسنده , , C. Hernandob، نويسنده , , M. Morab، نويسنده , , I.M. Pelayo b، نويسنده , , ?، نويسنده , , M.L. Puertas a، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
12
From page :
3020
To page :
3031
Abstract :
A set S of vertices of a connected graph G is convex, if for any pair of vertices u, v ∈ S, every shortest path joining u and v is contained in S. The convex hull CH(S) of a set of vertices S is defined as the smallest convex set in G containing S. The set S is geodetic, if every vertex of G lies on some shortest path joining two vertices in S, and it is said to be a hull set if its convex hull is V(G). The geodetic and the hull numbers of G are the minimum cardinality of a geodetic and a minimum hull set, respectively. In this work, we investigate the behavior of both geodetic and hull sets with respect to the strong product operation for graphs. We also establish some bounds for the geodetic number and the hull number and obtain the exact value of these parameters for a number of strong product graphs.
Keywords :
Metric graph theory , Geodetic set , Hull number , Geodetic number , Strong product , Hull set
Journal title :
Computers and Mathematics with Applications
Serial Year :
2010
Journal title :
Computers and Mathematics with Applications
Record number :
921770
Link To Document :
بازگشت