• Title of article

    On the Diophantine equation x2 − kxy + y2 + lx = 0, l ∈ {1, 2, 4}

  • Author/Authors

    Pingzhi Yuana، نويسنده , , ?، نويسنده , , Yongzhong Hub، نويسنده ,

  • Issue Information
    دوماهنامه با شماره پیاپی سال 2011
  • Pages
    5
  • From page
    573
  • To page
    577
  • Abstract
    We prove that the Diophantine equation x2−kxy+y2+lx = 0, l ∈ {1, 2, 4} has an infinite number of positive integer solutions x and y if and only if (k, l) = (3, 1), (3, 2), (4, 2), (3, 4), (4, 4), (6, 4). Furthermore, we prove that the Diophantine equation x2 −kxy+y2 + x = 0 has infinitely many integer solutions x and y if and only if k ̸= 0,±1, which answers a problem in Marlewski and Marzycki (2004) [1].
  • Keywords
    Quadratic equations , Pell’s equation
  • Journal title
    Computers and Mathematics with Applications
  • Serial Year
    2011
  • Journal title
    Computers and Mathematics with Applications
  • Record number

    921844