Title of article :
Fractional Bloch equation with delay
Author/Authors :
Sachin Bhalekar، نويسنده , , Varsha Daftardar-Gejji a، نويسنده , , Dumitru Baleanu، نويسنده , , c، نويسنده , , Richard Magind، نويسنده , , ?، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2011
Pages :
11
From page :
1355
To page :
1365
Abstract :
In this paper we investigate a fractional generalization of the Bloch equation that includes both fractional derivatives and time delays. The appearance of the fractional derivative on the left side of the Bloch equation encodes a degree of system memory in the dynamic model for magnetization. The introduction of a time delay on the right side of the equation balances the equation by also adding a degree of system memory on the right side of the equation. The analysis of this system shows different stability behavior for the T1 and the T2 relaxation processes. The T1 decay is stable for the range of delays tested (1–100 μs), while the T2 relaxation in this model exhibited a critical delay (typically 6 μs) above which the system was unstable. Delays are expected to appear in NMR systems, in both the system model and in the signal excitation and detection processes. Therefore, by including both the fractional derivative and finite time delays in the Bloch equation, we believe that we have established a more complete and more realistic model for NMR resonance and relaxation.
Keywords :
Delay , Bloch equation , Fractional calculus
Journal title :
Computers and Mathematics with Applications
Serial Year :
2011
Journal title :
Computers and Mathematics with Applications
Record number :
921921
Link To Document :
بازگشت